Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6895, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371435

RESUMO

Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω01/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω01, α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems.

2.
Nat Commun ; 8: 15189, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480900

RESUMO

Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

3.
Sci Rep ; 6: 36381, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821861

RESUMO

Semiconductor-based quantum dot single-electron pumps are currently the most promising candidates for the direct realization of the emerging quantum standard of the ampere in the International System of Units. Here, we discuss a silicon quantum dot single-electron pump with radio frequency control over the transparencies of entrance and exit barriers as well as the dot potential. We show that our driving protocol leads to robust bidirectional pumping: one can conveniently reverse the direction of the quantized current by changing only the phase shift of one driving waveform with respect to the others. We anticipate that this pumping technique may be used in the future to perform error counting experiments by pumping the electrons into and out of a reservoir island monitored by a charge sensor.

4.
Nat Phys ; 12(5): 460-464, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27239219

RESUMO

The emerging quantum technological apparatuses1, 2, such as the quantum computer3-6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8-10. However, the short distance between the heat-exchanging bodies in the previous experiments11-14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15-17 which provides a basis for the superconducting quantum computer18-21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26.

5.
Nano Lett ; 14(6): 3405-11, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24823277

RESUMO

Nanoscale single-electron pumps can be used to generate accurate currents, and can potentially serve to realize a new standard of electrical current based on elementary charge. Here, we use a silicon-based quantum dot with tunable tunnel barriers as an accurate source of quantized current. The charge transfer accuracy of our pump can be dramatically enhanced by controlling the electrostatic confinement of the dot using purposely engineered gate electrodes. Improvements in the operational robustness, as well as suppression of nonadiabatic transitions that reduce pumping accuracy, are achieved via small adjustments of the gate voltages. We can produce an output current in excess of 80 pA with experimentally determined relative uncertainty below 50 parts per million.

6.
Nano Lett ; 10(1): 11-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19950969

RESUMO

We have developed nanoscale double-gated field-effect-transistors for the study of electron states and transport properties of single deliberately implanted phosphorus donors. The devices provide a high-level of control of key parameters required for potential applications in nanoelectronics. For the donors, we resolve transitions corresponding to two charge states successively occupied by spin down and spin up electrons. The charging energies and the Lande g-factors are consistent with expectations for donors in gated nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...